SECTION 4 ## IDENTIFICATION OF VARIABLES - A = Total surface area to be protected. - A_R = Radius of anode circle (rod system). - A_s = Area protected by a single anode. - A_{SR} = Area protected by stub anodes. - C_c = Center-to-center spacing of anodes. - C_E = Coating efficiency in decimal form (0 to 0.99) - d = Anode backfill diameter. - D = Tank diameter. - D_A = Diameter of anode wire or rod. - D_E = Equivalent diameter factor for anodes in a circle (for submerged applications). - D_R = Diameter of anode ring (wire anode system). - E = Rectifier efficiency expressed in decimal form. - F = Fringe factor (for submerged rod anodes). - F_{ADJ} = Adjusting factor for parallel anodes. - H = Anode depth below water surface. - I' = Required current density. - K = Shape function. - L = Effective anode length. L_{AVG} = Average lead wire length of anodes with individual lead wires run in parallel. L_{B} = Bare anode length (used in submerged applications). L_F = Expected anode life. ln = Natural or Napierian logarithm. L_w = Header cable/wire length. M = Anode depth below water surface in centimeters. N = Number of anodes required to meet the desired life of a cathodic protection system. N_s = Number of stub anodes required. \mathbf{B} = Greek letter pi, or 3.14159. P_F = Paralleling factor. p = Greek letter rho, or Electrolyte resistivity in ohm-centimeters. R = Average coating resistance in ohm-square feet. R_A = Single anode-to-electrolyte resistance. R_{ADJ} = Adjusted resistance. R_c = Structure-to-electrolyte resistance. R_{H} = Single horizontal anode-to-electrolyte resistance. R_{t} = Single anode wire hoop-to-electrolyte resistance. R_{MFT} = Resistance per 1000 linear feet of cable/wire. R_N = Multiple anodes to electrolyte resistance. R_{NEG} = Resistance of the rectifier-to-structure negative (ground) cable. R_s = Effective coating resistance. R_{T} = Total circuit resistance. ## ETL 1110-9-10(FR) 5 Jan 91 RN = Header cable/wire resistance. V_{REC} = Rectifier voltage.